Op naar de Einsteintelescoop

Marc van der Sluys

Universiteit Utrecht, Nikhef

https://www.nikhef.nl/~sluys/

sluys@nikhef.nl

ART in drie slides

Golfoplossingen

Golven

- Golfoplossingen
- EM vs. GW
- Effect van een GW

- Vermogen
- GW

Inspiral, merger en rinadown

Een GW detector

Michelson Ml++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope

ART in drie slides

- Einsteinvergelijkingen
- Golfoplossingen

Golven

ART in drie slides

Einsteinvergelijkingen

Golfoplossing

Golven

- Golfoplossinge
- EM vs. GW
- Effect van een
- Amplitude
- Positie en oriëntatie
- Vermogen
- Het signaal van ee GW
- Inspiral, merger en ringdown

Een GW detector

Michelson interferomete MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope

Als hobby: ART: de Einsteinvergelijkingen (H 12.1)

• Newton: $\vec{g} = -\frac{GM}{r^2}\hat{r}$ • Gauss: $\vec{\nabla} \cdot \vec{g} = -4\pi G$

• Gauss:
$$\vec{\nabla} \cdot \vec{g} = -4\pi G \rho_{m}(\vec{r})$$
 (vergelijk $\vec{\nabla} \cdot \vec{E} = \rho_{e}(\vec{r})/\epsilon_{0}$)
• Einstein: $G_{\mu\nu} = \frac{8\pi G}{c^{4}} T_{\mu\nu}$

- $G_{\mu\nu}$: Einsteintensor: kromming van de ruimtetijd (m⁻²)
- $T_{\mu\nu}$: energie-impulstensor: verdeling van massa en energie (J/m³)
- Massa en energie vertellen de ruimtetijd hoe te krommen
- De gekromde ruimtetijd vertelt massa en energie hoe te bewegen

Bron: ScienceNews

Als hobby: ART: golfoplossingen (H12.1)

ART in drie slides

Einsteinvergelijkingen

Golfoplossingen

Golven

- Golfoplossingen
- EM vs. GW
- Effect van ee
- Amplitude
- Positie en oriëntatie
- Vermogen
- Het signaal van een GW
- Inspiral, merger en ringdown

Een GW detector

Michelson interferomete MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA

- Verstopt in de Einsteintensor $G_{\mu
 u}$ zit de **metrische tensor** $g_{\mu
 u}$
- Deze kan worden geschreven als:

$$g_{\mu
u}pprox\eta_{\mu
u}+h_{\mu
u}$$

- $\eta_{\mu\nu}$: de *vlakke* Minkowskiruimtetijd van de SRT ($\eta_{\mu\mu} = \pm 1$; $\eta_{\mu\neq\nu} = 0$)
- $h_{\mu\nu}$: een kleine **verstoring** daarop, met $|h| \ll 1$
- Kies symmetrie en coördinaten slim m.b.v. de Lorenz-ijking:

$$\Box \bar{h}_{\mu\nu} \equiv \left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right) \bar{h}_{\mu\nu} = -\frac{16\pi G}{c^4} T_{\mu\nu}$$

- gelineariseerde Einsteinvergelijkingen
- hebben de vorm van een golfvergelijking \rightarrow oplossingen zijn golven
- $c \rightarrow$ snelheid = lichtsnelheid

ART in drie slides

Einsteinvergelijkingen Golfoplossingen

Golven

- Golfoplossinger
- EM vs. GW
- Effect van een 0
- Amplitude
- Positie en oriëntatie
- Vermogen
- Het signaal van een GW
- Inspiral, merger en ringdown

Een GW detector

Michelson interferome MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope

- Als hobby: Golven in vacuüm (H12.2)
- In **vacuüm**, dus ver van de bron: $\Box \bar{h}_{\mu\nu} \equiv \left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} \nabla^2\right)\bar{h}_{\mu\nu} = 0$
- Meer slimme keuzes van coördinaten: TT-ijking → twee vrijheidsgraden over:
 → twee polarisaties: + en ×
- vlakke golven in de z-richting: $h_{ij}(t,z) = \begin{pmatrix} A_+ & A_{\times} & 0 \\ A_{\times} & -A_+ & 0 \\ 0 & 0 & 0 \end{pmatrix}_{ij} \sin \left[\omega_{gw} \left(t z/c \right) \right]$
 - $\mu \nu \rightarrow ij$: alleen *ruimtelijke dimensies*
 - $\omega_{gw} \equiv 2\pi f_{gw}$ is de *hoeksnelheid* of *hoekfrequentie* van de golf (in rad/s)
 - gw: gravitational wave = zwaartekrachtgolf
 - golven zijn transversaal: amplitude in x y-vlak, loodrecht op bewegingsrichting z
- In de TT-ijking geldt voor een **geodeet:** $\ddot{r}^i = \frac{1}{2}\ddot{h}_{ij}r^j$
 - probeer $r_i(t) = (x(t), y(t)) = (x_0 + \delta x(t), y_0 + \overline{\delta} y(t))$
 - voor i = j = 1 is $r_i = r_j = x(t)$, en aangenomen dat $\delta x \sim h \ll x_0$:

$$\frac{\partial}{\partial t^2}(x_0 + \delta x(t)) = \frac{1}{2} \frac{\partial^2 h_{11}}{\partial t^2}(x_0 + \delta x(t)) \approx \frac{1}{2} \frac{\partial^2}{\partial t^2} \left[A_+ \sin(\omega_{gw} t)\right] x_0$$

$$\rightarrow \quad \delta \ddot{x} = -\frac{1}{2} A_+ \omega_{gw}^2 \sin(\omega_{gw} t) x_0$$

ART in drie slides

Golven

- EM vs. GW
- Effect van een GW

- Vermogen Het signaal van een
- Inspiral, merger en
- Een GW detector
- Michelson interferometer Ml++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Moor detection

De toekomst

Finstein Telescope

Golven

- Golfoplossingen
- EM vs. GW
- Effect van een GW
- Amplitude
- Positie en oriëntatie
- Vermogen

- Het signaal van een GW
- Inspiral, merger en ringdown

In detail: ART: golfoplossingen (12.1, 12.2)

ART in drie slides

Einsteinvergelijkingen Golfoplossingen

Golven

Golfoplossingen

EM vs. GW Effect van een G

Amplitude

Positie en oriëntat

Het signaal van een GW

Inspiral, merger en ringdown

Een GW detector

Michelson interferomete MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope • De metrische tensor kan worden geschreven als: $g_{\mu
u}pprox\eta_{\mu
u}+h_{\mu
u}$

- $\eta_{\mu\nu}$ is de *vlakke* Minkowskiruimtetijd van de SRT $(\eta_{\mu\mu} = \pm 1; \eta_{\mu\neq\nu} = 0)$
- $h_{\mu\nu}$ is een kleine **verstoring** daarop, met $|h| \ll 1$
- Kies symmetrie en coördinaten slim m.b.v. de *Lorenz-ijking* en *TT-ijking*
- Beschouw "vacuüm" (lage dichtheid, ver van de bron): $T_{\mu\nu} \sim 0$:

$$\Box ar{h}_{\mu
u} \equiv \left(rac{1}{c^2}rac{\partial^2}{\partial t^2} -
abla^2
ight)ar{h}_{\mu
u} = 0$$

• Dan hebben we:

- gelineariseerde Einsteinvergelijkingen (een beperkt geldige versimpeling)
- hebben de vorm van een golfvergelijking \rightarrow oplossingen zijn golven
- golven zijn transversaal en hebben amplitude $|h_{\mu\nu}|$
- $c^2 \rightarrow$ snelheid = lichtsnelheid
- twee vrijheidsgraden over \rightarrow twee polarisaties: + en \times

Elektromagnetische vs. gravitatiegolven

ART in drie slides

Einsteinvergelijkingen Golfoplossingen

Golven

Golfoplossingen

EM vs. GW

Effect van een GV

Amplitude

Positie en oriëntatie

Vermogen

Het signaal van een GW

Inspiral, merger en ringdown

Een GW detector

Michelson interferomete MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA

EM golven ...

- bewegen zich door de ruimtetijd
- worden incoherent geproduceerd door vele (kleine) atomen
- hebben een korte golflengte m.b.t. de afmeting van de bron
- hebben frequenties $\geq 10^6$ Hz
- maken gebruik van de relatief sterke EM-kracht
- worden gemeten in energie $\rightarrow L(r) \sim 1/r^2$

Gravitatiegolven ...

- zijn golven in de metriek van de ruimtetijd
- worden coherent geproduceerd door een paar grote massa's
- hebben een lange golflengte m.b.t. de afmeting van de bron
- hebben frequenties $\leq 10^3$ Hz
- maken gebruik van de zwakke zwaartekracht
- worden gemeten in amplitude $\rightarrow L(r) \sim 1/r$

ABT in drie slides

Het effect van een passerende zwaartekrachtgolf (H 12.2)

• Voor alle *i*, *j*, dus alle combinaties van polarisatie en ruimtecoördinaat:

$$\delta x(t) = \frac{x_0}{2} A_+ \sin(\omega_{gw} t) = \frac{x_0}{2} h_+(t);$$

$$\delta y(t) = -\frac{y_0}{2} A_+ \sin(\omega_{gw} t) = -\frac{y_0}{2} h_+(t);$$

$$\begin{split} \delta x(t) &= \frac{y_0}{2} A_{\times} \sin(\omega_{\text{gw}} t) = \frac{y_0}{2} h_{\times}(t); \\ \delta y(t) &= \frac{x_0}{2} A_{\times} \sin(\omega_{\text{gw}} t) = -\frac{x_0}{2} h_{\times}(t). \end{split}$$

Effect van een GW

Amplitud

Golven

Positie en oriëntati

Vermoger

Het signaal van ei GW

Inspiral, merger en

Een GW detector

Michelson interferome MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA • $\rightarrow h(t) \sim \frac{\delta x(t)}{x}$ heet de **strain** en is een **relatieve** amplitude • Dit verklaart ook de namen van de **polarisaties** + en ×

ART in drie slides

Einsteinvergelijkingen Golfoplossingen

Golven

Golfoplossingen EM vs. GW

Effect van een GW

Amplitude

Positie en oriëntatie Vermogen

Het signaal van een GW

Inspiral, merger en ringdown

Een GW detector

Michelson interferometer MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA

De Virgo-detector (Italië)

- LIGO Livingston, Louisiana (L1: 4 km)
- LIGO Hanford, Washington (H1: 4 km)
- Virgo: Pisa, Italië (V: 3 km)
- KAGRA: Japan (2023, 3 km)
- Indigo: India (2025+?, 4 km)

Als hobby: Quadrupoolstraling (H 12.3)

Uit behoud van energie en impuls volgt:

- $h_{+} = \frac{1}{d} \frac{G}{c^4} \left(\ddot{Q}^{11} \ddot{Q}^{22} \right); \qquad h_{\times} = \frac{2}{d} \frac{G}{c^4} \ddot{Q}^{12}$
 - Q(t): quadrupoolmoment: $Q^{ij} \equiv \mu r^i r^j$, met $\mu \equiv \frac{M_1 M_2}{M_1 + M_2}$ de gereduceerde massa
 - vergelijkbaar met het traagheidsmoment $I = mr^2$, maar met richtingsgevoeligheid
 - voor een dubbelster: $I = I_1 + I_2 = M_1 a_1^2 + M_2 a_2^2 = \frac{M_1 M_2}{M_1 + M_2} a_b^2 \equiv \mu a_b^2$
 - maar: $\dot{I} = 0; \quad \dot{Q} \neq 0!$
- Dubbelster met cirkelbaan in x y-vlak:
 - Ster 1: $[x_1, y_1, z_1] = a_1 \left[\cos \left(\omega_{\rm b} t + \frac{\pi}{2} \right), \sin \left(\omega_{\rm b} t + \frac{\pi}{2} \right), 0 \right]$
- Dan volgt uit $Q^{ij} = \mu r^i r^j$ dat • $\ddot{Q}^{xx} = -\ddot{Q}^{yy} = 2\mu a_b^2 \omega_b^2 \cos(2\omega_b t)$ • $\ddot{Q}^{xy} = \ddot{Q}^{yx} = 2\mu a_b^2 \omega_b^2 \sin(2\omega_b t)$
- Invullen geeft:

$$h_{+}(t) = \frac{4}{d} \frac{G}{c^4} \mu a_b^2 \omega_b^2 \cos(2\omega_b t)$$
$$h_{\times}(t) = \frac{4}{d} \frac{G}{c^4} \mu a_b^2 \omega_b^2 \sin(2\omega_b t)$$

ART in drie slides Einsteinvergelijkingen Golfoplossingen

Golven

Golfoplossinger

EM vs. GW

Effect van een GW

Amplitude

Positie en oriëntatie

Vermogen

Het signaal van een GW

Inspiral, merger en ringdown

Een GW detector

Michelson interferomete MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA

Amplitude van een zwaartekrachtgolf (H 12.3)

• Zwaartekrachtgolven (Newtoniaanse beschrijving!):

ART in drie slides

Einsteinvergelijkinger Golfoplossingen

Golven

- Golfoplossingen
- EM vs. GW
- Effect van een GW

Amplitude

- Positie en oriëntati
- Vermogen Het signaal van eer GW
- Inspiral, merger en ringdown

Een GW detector

Michelson interferomete MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA

$$h_{+}(t) = \frac{4}{d} \frac{G}{c^4} \mu a_b^2 \omega_b^2 \cos(2\omega_b t) \equiv |h(t)| \cos(2\omega_b t) \equiv |h(t)| \cos(\omega_{gw} t)$$
$$h_{\times}(t) = \frac{4}{d} \frac{G}{c^4} \mu a_b^2 \omega_b^2 \sin(2\omega_b t) \equiv |h(t)| \sin(2\omega_b t) \equiv |h(t)| \sin(\omega_{gw} t)$$

• M.b.v. Kepler:
$$|h(t)| \equiv \frac{4}{d} \frac{G}{c^4} \mu a_b^2 \omega_b^2 = \frac{4}{d} \frac{G^{5/3}}{c^4} \frac{M_1 M_2}{M_T^{1/3}} (\pi f_{gw})^{2/3}$$

 $= \frac{4}{d} \frac{G^2}{c^4} \frac{M_1 M_2}{a_b} = \frac{4}{d} \left(\frac{G \mathcal{M}_c}{c^2} \right)^{5/3} \left(\frac{\omega_b}{c} \right)^{2/3}$
• met $\mu \equiv \frac{M_1 M_2}{M_1 + M_2}$ de gereduceerde massa en $\mathcal{M}_c = \left(\frac{M_1 M_2}{M_T^{1/3}} \right)^{3/5}$ de chirpmassa

Hieruit zien we:

- de amplitude is omgekeerd evenredig met de afstand tot de bron d
 de leidende orde van zwaartekrachtstraling is de quadrupoolstraling
 aan aavmmetrie in de massavordeling die varijget met de tijd is ned
- een asymmetrie in de massaverdeling die variëert met de tijd is nodig
-) de frequentie van GWs is **tweemaal** de baanfrequentie: $\omega_{\sf gw}=2\omega_{\sf b}$
-) h_+ en h_{\times} hangen alleen via de **chirpmassa** van de stermassa's

Amplitude van een zwaartekrachtgolf (H 12.3)

ART in drie slides

Einsteinvergelijkinge Golfoplossingen

Golven

- Golfoplossinger
- EM vs. GW
- Effect van een GW

Amplitude

- Positie en oriëntatie
- Vermogen
- Het signaal van een GW
- Inspiral, merger en ringdown

Een GW detector

Michelson interferomete MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA

$$\begin{split} h(t)| &= \frac{4}{d} \frac{G}{c^4} \mu a_b^2 \omega_b^2 = \frac{4}{d} \frac{G^{5/3}}{c^4} \frac{M_1 M_2}{M_T^{1/3}} \left(\pi f_{gw} \right)^{2/3} \\ &= \frac{4}{d} \frac{G^2}{c^4} \frac{M_1 M_2}{a_b} = \frac{4}{d} \left(\frac{G \mathcal{M}_c}{c^2} \right)^{5/3} \left(\frac{\omega_b}{c} \right)^{2/3} \end{split}$$

Let op: h(t) is de strain; een relatieve amplitude, dus dimensieloos!

Voorbeelden

$$M_1 \sim 75 \text{ kg}, M_2 \sim 5 \text{ kg}, a_b \sim 0.5 \text{ m}, f_b \sim 1 \text{ Hz}, d \sim 10 \text{ m}: |h| \sim 10^{-52}$$

$$M_1 = 1 M_{\odot}, M_2 = 1 M_{\oplus}, a_b = 1 \text{ A.U.}, d \sim 1 \text{ pc:} |h| \sim 6 \times 10^{-27}$$

②
$$\mathit{M}_{1}=35\,\mathit{M}_{\odot},\,\mathit{M}_{2}=30\,\mathit{M}_{\odot},\,\mathit{f}_{\mathsf{b}}\sim50\,\mathsf{Hz},\,\mathit{d}\sim440\,\mathsf{Mpc}$$
: $|\mathit{h}|\sim1.5 imes10^{-21}$

- voor een detector met $L \sim 3-4$ km: $5-6 \times 10^{-18}$ m
- vgl.: "ladingsdiameter" van een proton: $d_p \approx 1.7 \times 10^{-15} \, \text{m}$
- een glaasje water t.o.v. alle oceanen op Aarde!
- 1/10 waterdruppel in het IJsselmeer

Signaal:

ART in drie slides

Einsteinvergelijkinger Golfoplossingen

Golven

Golfoplossingen

EM vs. GW

Effect van e

Amplitude

Positie en oriëntatie

Het signaal van een GW

Inspiral, merger en ringdown

Een GW detector

Michelson interferomete MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA

$h_{+}(t) = \frac{4}{d} \frac{G}{c^4} \mu a_b^2 \omega_b^2 \frac{1 + \cos^2 \iota}{2} \cos(2\omega_b t)$ $h_{\times}(t) = \frac{4}{d} \frac{G}{c^4} \mu a_b^2 \omega_b^2 \frac{\cos \iota}{2} \sin(2\omega_b t)$

• ι = inclinatie dubbelsterbaan:

 $\iota = 0/180^{\circ}$: "face-on/face-off" (sterk); $\iota = 90^{\circ}$: "edge-on": alleen h_+ (zwak)!

Projectie op de detector:

$$F_{+}(\theta, \varphi, \psi) = \frac{1 + \cos^{2} \theta}{2} \cos(2\varphi) \cos(2\psi) - \cos \theta \sin(2\varphi) \sin(2\psi)$$

$$F_{\times}(\theta, \varphi, \psi) = \frac{1 + \cos^{2} \theta}{2} \cos(2\varphi) \sin(2\psi) + \cos \theta \sin(2\varphi) \cos(2\psi)$$

• θ : de **poolhoek** van de bron, van het zenit tot het nadir (0- π)

- φ : het **azimut** ("windrichting") van de bron, langs de horizon (0–2 π)
- ψ : de **polarisatiehoek**, de oriëntatie van de bron om de gezichtslijn (0- π)

Totale strain:
$$h(t) = F_{+}(\theta, \varphi, \psi) h_{+}(t) + F_{\times}(\theta, \varphi, \psi) h_{\times}(t)$$

Gemiddelde positie, oriëntatie: $\langle h(t) \rangle = \frac{2}{5} (h_{+}(t; \iota = 0) + h_{\times}(t; \iota = 0)) (\langle F \rangle = \frac{2}{5}$

Hemelpositie en oriëntatie (H 12.)

Uitgestraald vermogen (H12.4)

ART in drie slides

Einsteinvergelijkingen Golfoplossingen

Golven

- Golfoplossingen
- EM vs. GW
- Effect van een GW
- Amplitude

Positie en oriënta

Vermogen

- Het signaal van een GW
- Inspiral, merger en ringdown

Een GW detector

Michelson interferometer MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA

•
$$\frac{dP_{gw}}{d\Omega} = \frac{c^{3}}{16\pi G} d^{2} \left\langle \dot{h}_{+}^{2} + \dot{h}_{\times}^{2} \right\rangle_{t} = \frac{G}{2\pi c^{5}} \mu^{2} a_{b}^{4} \omega_{b}^{6} \left[\left(\frac{1 + \cos^{2} \iota}{2} \right)^{2} + \cos^{2} \iota \right]$$

•
$$P_{gw} = \frac{32}{5} \frac{c^{5}}{G} \left(\frac{G\mathcal{M}_{c} \omega_{gw}}{2c^{3}} \right)^{10/3} = \frac{32}{5} \frac{G^{4}}{c^{5}} \frac{M_{1}^{2} M_{2}^{2} M_{T}}{a_{b}^{5}}$$

Voorbeelden

M₁ ~ 75 kg,
$$M_2$$
 ~ 5 kg, a_b ~ 0.5 m, f_b ~ 1 Hz, d ~ 10 m:
 $P_{\rm gw}$ ~ 10⁻⁵⁹ W

②
$$M_1 = 1 M_{\odot}, M_2 = 1 M_{\oplus}, a_b = 1 \text{ A.U.}, d \sim 1 \text{ pc:}$$

 $P_{gw} \sim 196 \text{ W}$

•
$$M_1 = 35 M_{\odot}, M_2 = 30 M_{\odot}, f_b \sim 50 \text{ Hz}, d \sim 440 \text{ Mpc}:$$

 $P_{gw} \sim 1.8 \times 10^{22} L_{\odot}$
 $\sim 10 \times \text{ alle sterren in het zichtbare heelal!}$

[&]quot;Pindadop"

Het signaal van een inspiral, merger en ringdown (H 12.5)

ART in drie slides

Einsteinvergelijkinge Golfoplossingen

Golven

Golfoplossingen

EM vs. GW

Effect van een GW

Amplitude

Positie en oriëntatie

Vermogen

Het signaal van een GW

Inspiral, merger en ringdown

Een GW detector

Michelson interferometer MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA

Het signaal van een inspiral, merger en ringdown (H 12.5)

ART in drie slides

Einsteinvergelijkinge Golfoplossingen

Golven

- Golfoplossingen
- EM vs. GW
- Effect van een GW
- Amplitude
- Positie en oriëntatie Vermogen
- Het signaal van een GW
- Inspiral, merger en ringdown

Een GW detector

Michelson interferometer MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope

LISA

Golven

3

Een GW detector Michelson interferometer

• MI++

ART in drie slides

Einsteinvergelijkinger Golfoplossingen

Golven

Golfoplossinge

EM vs. GV

- Effect van een GV
- Amplitude
- Positie en oriëntatie

Vermoger

Het signaal van een GW

Inspiral, merger en

Een GW detector

Michelson

interferometer

MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA

• $\Delta L(t) = \Delta L_{x}(t) - \Delta L_{y}(t) = \frac{L_{x}}{2}h(t) - \frac{-L_{y}}{2}h(t) \approx Lh(t) \rightarrow h \equiv \frac{\Delta L}{L}$ • Shot noise: $S_{n}^{1/2}(t) = h_{min}(t) = \frac{\Delta L_{min}(t)}{L} = \frac{1}{2\pi L}\sqrt{\frac{hc\lambda_{L}}{\eta_{PD}P_{L}}}$ in $\frac{1}{\sqrt{Hz}}$

Fotodetector

- $\lambda_{\rm L}, P_{\rm L}$: golflengte en vermogen laser
- η_{PD} : efficiency fotodiode
- $L \approx 4 \text{ km}, \lambda_L \approx 1064 \text{ nm en } P_L \approx 100 \text{ W}, \eta_{\text{PD}} = 0.93: h_{\min}(f) \approx 2 \times 10^{-21} / \sqrt{\text{Hz}}$ • @100 Hz: $h_{\min} \approx h_{\min}(f) \cdot \sqrt{100} \approx 2 \times 10^{-20} > 1.5 \times 10^{-21} \rightarrow \text{niet genoeg!}$

Een zwaartekrachtgolfdetector (H 12.6)

Michelson interferometer

MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA

Twee ingangsspiegels in de armen \rightarrow **Fabry-Pérot-holtes**: $L' \sim 250-300 L$ • minder shot noise, maar meer **ruis door stralingsdruk** bij lage frequentie • $\rightarrow h_{\min} \rightarrow ch_{\min}/250$

- 3 Vermogenrecyclingspiegel bij laser: $P'_{\rm L} \sim 50 P_{\rm L} \rightarrow h_{\rm min} \rightarrow \sim h_{\rm min}/3$
- **Signaalrecyclingspiegel** bij fotodiode: kies optimale f_{gw} $\rightarrow S_n^{1/2}(f) \sim 3 \times 10^{-24} / \sqrt{Hz} \propto h_{min} \sim 3 \times 10^{-23} (@100 \text{ Hz}) \rightarrow \text{genoeg}!$

Een zwaartekrachtgolfdetector (H 12.6)

ART in drie slides

Einsteinvergelijkinger Golfoplossingen

Golven

Golfoplossingen

EM vs. GW

Effect van een GW

Amplitude

Positie en oriënta

Vermogen

Het signaal van ee GW

Inspiral, merger en ringdown

Een GW detector

Michelson interferomete MI++

Detect

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA

• O1: LIGO Observation run 1 (2015)

ART in drie slides

Einsteinvergelijkinge Golfoplossingen

Golven

- Golfoplossingen
- EM vs. GW
- Effect van een GW
- Amplitude
- Positie en oriëntati Vermogen
- Het signaal van een GW
- Inspiral, merger en ringdown

Een GW detector

Michelson interferometer MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk

Einstein Telescope

LISA

Golven

Een GW detector

ART in drie slides

Golfoplossingen

Golven

Golfoplossingen

EM vs. GW

Effect van een GW

Vermogen

GW

Inspiral, merger en rinadown

Een GW detector

Michelson interferometer Ml++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk

Einstein Telescope

LISA

In de ruwe data zitten:

GW signaal

2 Ruis!

De eerste detectie: GW 150914

Bron van GW 150914: dubbel zwart gat

ART in drie slides

Einsteinvergelijkinge Golfoplossingen

Golven

- Golfoplossingen
- EM vs. GW
- Effect van een GW
- Amplitude
- Positie en oriëntatie
- Vermogen
- Het signaal van een GW
- Inspiral, merger en ringdown

Een GW detector

Michelson interferometer MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA

Bron: SXS Collaboration

Bron van GW 150914

ART in drie slides

Einsteinvergelijkingen Golfoplossingen

Golven

- Golfoplossingen
- EM vs. GW
- Effect van een GW
- Amplitude
- Positie en oriëntatie
- Vermogen
- Het signaal van een GW
- Inspiral, merger en ringdown

Een GW detector

Michelson interferometer MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA

Bron: SXS Collaboration

Bron van GW 150914

ART in drie slides

Einsteinvergelijkingen Golfoplossingen

Golven

- Golfoplossingen EM vs. GW
- Effect van ee
- Amplitude
- Positie en oriëntat
- Het signaal van een GW
- Inspiral, merger en ringdown

Een GW detector

Michelson interferometer MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA

Dubbel zwart gat:

- $M_1 = 32 41 \, M_{\odot}$
- $M_2 = 25 33 M_{\odot}$
- Afstand: ~ 230 570 Mpc (~ 0.75 - 1.86 miljard lichtjaar)
- Massa resulterend zwart gat: $58 66 M_{\odot}$
- Spin (0-1) resulterend zwart gat: 0.60 0.72
- Verloren massa: $\sim 2.5 3.5 M_{\odot}$: $mc^2 = E!$
- Maximale helderheid:
 - $\sim 3.2 4.0 \times 10^{49} \, W$
 - ~ 200 $M_{\odot}c^2/s$
 - $\sim 9.4 imes 10^{22} L_{\odot}$
 - $\bullet\ \sim 50\times$ alle sterren in het zichtbare heelal!

Nieuw!!!

ART in drie slides

Einsteinvergelijkingen Golfoplossingen

Golven

- Golfoplossinger
- EM vs. GW
- Effect van een
- Amplitude
- Positie en oriëntatie
- Vermogen Het signaal van een GW
- Inspiral, merger en ringdown

Een GW detector

Michelson interferomete MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA

Astrofysica:

- Eerste directe waarneming van een zwart gat
- Eerste dubbele zwarte gat
- Eerste merger van dubbel zwart gat
- **Zwaarste** zwarte gaten waargenomen (> $25 M_{\odot}$)
- Zwarte gaten smelten misschien vaker samen dan we dachten
 - $\, \bullet \,$ BBH rate $\gtrsim 1 \, \text{Gpc}^{-3} \, \text{yr}^{-1}$
- Zwakke sterenwinden, lage metalliciteit ($\lesssim 0.5 Z_{\odot}$)

Fysica:

- Geen afwijkingen Algemene Relativiteitstheorie
- Bevestiging theoretische (IMR) waveforms (≥ 96%)
- Gravitonmassa: $m_{
 m g} \leq 1.2 imes 10^{-22} \, {
 m eV/c^2}$ = 2 imes 10 $^{-55} \, {
 m g}$
- Gravitonspin, polarisaties GWs: geen constraints

ART in drie slides

Einsteinvergelijkingen Golfoplossingen

Golven

- Golfoplossingen
- EM vs. GW
- Effect van een GW
- Amplitude
- Positie en oriëntatie
- Vermogen
- Het signaal van een GW
- Inspiral, merger en ringdown

Een GW detector

Michelson interferometer MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA

GW 170817: eerste NS-NS botsing

1)))

GW 170817: optische tegenhanger!

ART in drie slides

Einsteinvergelijkinger Golfoplossingen

Golven

- Golfoplossinge
- EM vs. GW
- Effect van een GW
- Amplitude
- Positie en oriëntatie
- Vermogen
- Het signaal van e GW
- Inspiral, merger en ringdown

Een GW detector

Michelson interferomete MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA

Bron: ligo.org

Elektromagnetische waarnemingen

- Gammaflits: Fermi
- Optische waarneming: Swope & Magellan telescopen

GW 170817: hemelpositie

ART in drie slides

Zwaartekrachtgolven

Einsteinvergelijkingen Golfoplossingen

Golven

Golfoplossingen

EM vs. GW

Effect van een GW

Amplitude

Positie en oriëntatie

Vermogen

Het signaal van een GW

Inspiral, merger en ringdown

Een GW detector

Michelson interferometer

MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk Einstein Telescope LISA

Bron: Abbott et al. (2017)

ART in drie slides

Einsteinvergelijkinge Golfoplossingen

Golven

- Golfoplossingen
- EM vs. GW
- Effect van een GW
- Amplitude
- Positie en oriëntati Vermogen
- Het signaal van een GW
- Inspiral, merger en ringdown

Een GW detector

Michelson interferometer MI++

Detecties

GW 150914: BH+BH GW 170817: NS+NS

Analyse van GWs

Spectra en SNR Meer detecties

De toekomst

Globaal netwerk

Einstein Telescope

LISA

Golven

3 Een GW detector

5

Analyse van GWs

- Spectra en SNR
- Meer detecties

Detecties van zwaartekrachtgolven (H 12.7)

ART in drie slides

Golfoplossingen	Signaal	M ₁	M ₂	Afstand	Ndet	SNR	T _{obs}	Run	Opmerkingen
Golven		(<i>M</i> _☉)	(<i>M</i> ⊙)	(Mpc)		_	(s)		
Golfoplossingen	GW 150914	35.6	30.6	440	2	26.0	0.3	01	eerste detectie, BBH
Effect van een GW	GW 151012	23.2	13.6	1080	2	10.0	0.8	O1	tweede detectie, BBH
Amplitude	GW 151226	13.7	7.7	450	2	13.1	1.9	O1	derde detectie, BBH
Positie en oriëntatie Vermogen	GW 170817	1.46	1.27	40	3	33.0	56	O2	eerste BNS, GRB 170817A,
Het signaal van een									luidste signaal in O1–O3
GW Inspiral, merger en	GW 190425	2.1	1.3	150	2	12.4	121	O3	BNS
ringdown	GW 190426	105.5	76.0	4580	2	8.7	0.1	O3	zwaarste BBH in O1–O3
Een GW detector	GW 190521	98.4	57.2	3310	3	14.3	0.2	O3	zware BBH
Michelson interferometer	GW 200105	9.1	1.91	270	2	13.7	28	O3	eerste NSBH
MI++	GW 200115	5.9	1.44	290	3	11.3	50	O3	NSBH
Detecties	GW 200308	60	24	7100	3	4.7	0.5	O3	zware BBH
GW 150914: BH+BH									

Bron: The Gravitational-wave Transient Catalog (GWTC)

GW 170817: NS+NS Analyse van GWs

Spectra en SNR

Meer detecties

De toekomst

Globaal netwerk Finstein Telescope • O4 begon in mei 2023 en heeft een geplande duur van 18 maanden

Waargenomen kosmische signalen

Zwaartekrachtgolven

ART in drie slides Einsteinvergelijkingen Golfoplossingen				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Golven		 		
Golloplossingen EM vs. GW Effect van een GW Amplitude Positie en oriëntatie Vermogen Het signaal van een GW Inspiral van een		1		·····
	~~~~~			
ringdown			N 100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Een GW detector Michelson interferometer				
MI++				
Detecties GW 150914: BH+BH GW 170817: NS+NS				~~~~~
Analyse van GWs Spectra en SNR Meer detecties				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
De toekomst Globaal netwerk				
Einstein Telescope LISA		-1.5.8	-1 a	-0.05

#### Bron: waveview.cardiffgravity.org

# zwaartekrachtgolven Waargenomen botsende zwarte gaten en neutronensterren: 91!

#### ART in drie slides

Einsteinvergelijkingen Golfoplossingen

#### Golven

- Golfoplossingen EM vs. GW
- Effect van een GW
- Amplitude
- Positie en oriëntatie Vermogen
- Het signaal van eer GW
- Inspiral, merger en ringdown

### Een GW detector

Michelson interferometer MI++

#### Detecties

GW 150914: BH+BH GW 170817: NS+NS

#### Analyse van GWs

Spectra en SNR

Meer detecties

#### De toekomst

Globaal netwerk Einstein Telescope LISA

36 31	23 14	14 7.7	31 20	11 7.6	50 34	35 24	31 25	1.5 1.3	35 27	40 29	88 22	25 18
63	36	<b>21</b>	<b>49</b>	<b>18</b>	80	56	53	≤ <b>2.8</b>	60	65	105	<b>41</b>
cw/tsoan4	GW151012	cw151226	GW170104	GW770608	GW170729	cwnnoace	cwn70814	GW170817	GW170818	cwi70823	CW190403_051519	GW190406_181802
30 8.3 <b>37</b> CW190412	35 24 <b>56</b> GW190413_052954	48 32 76 CW190413.134308	41 32 70 GW190421.213856	2 1.4 <b>3.2</b> cw/190425	107 77 175 GW190426.190642	43 28 69 CW190503.185404	23 13 <b>35</b> GW190612.180714	36 18 52 GW190613.205428	39 28 65 CW190514_065436	37 25 59 GW190617.035101	66 41 101 CW190579.153544	95 69 156 GW190521
42 33	37 23	69 48	57 36	35 24	54 41	67 38	12 8.4	18 13	37 21	13 7.8	12 6.4	38 29
71	56	111	87	56	90	99	<b>19</b>	<b>30</b>	55	20	<b>17</b>	64
GW190621.074359	cwriaosz7.092055	CW/90602.179927	GW190620.030421	cwr90630.185205	cwr90701.203306	GW190706.322641	cw190707.0933326	cwr90708.232497	GW190719.215514	GW190720.000836	GW190725.174728	cwr90727 060333
12 B.1	42 29	37 27	48 32	23 2.6	32 26	24 10	44 36	35 24	44 24	9.3 2.1	8.9 5	21 16
20	67	62	76	<b>26</b>	55	33	76	<b>57</b>	66	11	<b>13</b>	35
GW/190728L064530	CW190731_340936	GW190803.022701	CW190805211137	GW190814	cwr90828.063405	GW190828.065509	GW190990.112807	cwr90915.235702	GW190916.200658	GW190917.114630	GW190924.021846	cwr90925.232845
40 23	81 24	12 7.8	12 7.9	11 7.7	65 67	29 59	12 8.3	53 24	11 6.7	27 19	12 8.2	25 18
61	102	<b>19</b>	<b>19</b>	<b>18</b>	107	<b>34</b>	<b>20</b>	76	<b>17</b>	<b>45</b>	<b>19</b>	41
GW190926.050336	CW190929_012149	GW190930.133541	cwriatios.cit2549	GW191105.343521	cowiaiio9_010777	cwianis.ormas	GW191126.115259	CW191127.0502277	GW191129_134029	GW191204_110529	cwraitor i'rlise	GW191285, 223052
12 7.7	31 1.2	45 35	49 37	9 19	36 28	5.9 1.4	42 33	34 29	10 7.3	38 27	51 12	36 27
<b>19</b>	32	76	82	11	61	7.2	71	60	17	63	61	60
GW191216_213338	CW191239_363120	GW191222_033637	CVV191230.180458	cw200105_162426	cw200112_156838	cw200115_042309	GW200128_022011	CW200129.065458	GW200202_154313	GW200208_330177	GW200206.222617	cw200209.086467
24 2.8	51 30	38 28	87 61	³⁹ ²⁸	40 33	19 14	36 20	28 15	36 14	34 28	13 7.8	34 14
27	78	62	141	64	69	<b>32</b>	56	42	47	59	20	53
GW2002V0.092254	CWV2D0216_220604	GW200219_094415	CW/200220_061928	cw200220_124860	CW200224_222234	GW200225,060421	cw200302_01581	GW200306L093774	cw200308_173609	cw2003112115865	GW200336_215756	cwzposzz_osmss

#### Bron: www.ligo.caltech.edu

#### ART in drie slides

Einsteinvergelijkinge Golfoplossingen

### Golven

- Golfoplossingen
- EM vs. GW
- Effect van een GW
- Amplitude
- Positie en oriëntatie Vermogen
- Het signaal van een GW
- Inspiral, merger en ringdown

# Een GW detector

Michelson interferometer MI++

#### Detecties

GW 150914: BH+BH GW 170817: NS+NS

#### Analyse van GWs

Spectra en SNR Meer detecties

#### De toekomst

Globaal netwerk Einstein Telescope

LISA



Golven

# 3 Een GW detector



# 6 Analyse van GWs

# 6 De toekomst

- Globaal netwerk
- Einstein Telescope
- LISA

# Globaal GW-detectornetwerk

#### ART in drie slides

Einsteinvergelijkinger Golfoplossingen

### Golven

- Golfoplossingen
- EM vs. GW
- Effect van een GW
- Amplitude
- Positie en oriëntatie
- Vermogen
- Het signaal van een GW
- Inspiral, merger en ringdown

#### Een GW detector

Michelson interferomete MI++

#### Detecties

GW 150914: BH+BH GW 170817: NS+NS

#### Analyse van GWs

Spectra en SNR Meer detecties

#### De toekomst

#### Globaal netwerk Einstein Telescope

LISA



Bron: Nissanke et al., 2013

# **Einstein Telescope**

#### ART in drie slides

Einsteinvergelijkingen Golfoplossingen

# Golven

Golfoplossingen EM vs. GW Effect van een GW Amplitude Positie en oriëntatie Vermogen Het sionaal van eei

GW Inspiral, merger en ringdown

#### Een GW detector

Michelson interferometer MI++

#### Detecties

GW 150914: BH+BH GW 170817: NS+NS

# Analyse van GWs

Spectra en SNR Meer detecties

# De toekomst Globaal netwerk

Einstein Telescope



- Groter dan LIGO/Virgo
- Gevoeliger
- Zwakkere  $\rightarrow$  meer signalen
- Overlappende signalen!
- 1 driehoek of 2 L's?
- 10–15–20 km?
- NI-B-D of It?
- Tegenhanger VS: Cosmic Explorer

#### ART in drie slides

Einsteinvergelijkingen Golfoplossingen

# Golven

- Golfoplossingen EM vs. GW Effect van een GW Amplitude Positie en oriëntatie Vermogen
- Het signaal van een GW
- Inspiral, merger en ringdown

#### Een GW detector

Michelson interferometer MI++

#### Detecties

GW 150914: BH+BH GW 170817: NS+NS

### Analyse van GWs

Spectra en SNR Meer detecties

# De toekomst

Einstein Telescope

LISA



### Bron: Marco Kraan/Nikhef

#### ART in drie slides

Einsteinvergelijkingen Golfoplossingen

# Golven

- Golfoplossingen
- EM vs. GW
- Effect van een GW
- Amplitude
- Positie en oriëntatie
- Vermogen
- Het signaal van een GW
- Inspiral, merger en ringdown

#### Een GW detector

Michelson interferometer MI++

#### Detecties

GW 150914: BH+BH GW 170817: NS+NS

#### Analyse van GWs

Spectra en SNR Meer detecties

#### De toekomst

Globaal netwerk

### Einstein Telescope

LISA



# **ET** Pathfinder

# Advanced Virgo: Superattenuator Payload

Interface to

steering filter

Marionette

Cage

Test Mass

Mirror

Actuation

# Superattenuator

#### ART in drie slides

Einsteinvergelijkinger Golfoplossingen

#### Golven

- Golfoplossingen
- EM vs. GW
- Effect van een GW
- Amplitude
- Positie en oriëntatie
- Vermogen
- Het signaal van e GW
- Inspiral, merger en ringdown

# Een GW detector

Michelson interferomet MI++

### Detecties

GW 150914: BH+BH GW 170817: NS+NS

#### Analyse van GWs

Spectra en SNR Meer detecties

#### De toekomst

Globaal netwer

#### Einstein Telescope

LIS.



#### ART in drie slides

Golfoplossingen

#### Golven

- Golfoplossingen
- EM vs. GW
- Effect van een GW

- Vermogen
- GW
- Inspiral, merger en ringdown

### Een GW detector

Michelson Ml++

#### Detecties

GW 150914 BH-BH GW 170817: NS+NS

#### Analyse van GWs

Spectra en SNR Moor detection

#### De toekomst

# Einstein Telescope



# ET Education centre, Kerkrade

Tickets

NL 7

Einstein Telescope Education Centre biedt vanaf schooliaar 2024-2025 een programma voor middelbare scholieren

Interactief leren, zelf onderzoek doen en ervaringen delen. Dat is wat middelbare scholieren gaan doen bij een bezoek aan het Einstein Telescope Education Centre (ETEC). Bij dit educatieve centrum leren ze over zwaartekrachtgolven en de Einstein

Bron: www.discoverymuseum.nl/activiteiten/etec

# Laser Interferometer Space Antenna (LISA)

#### ART in drie slides

Einsteinvergelijkingen Golfoplossingen

#### Golven

- Golfoplossingen EM vs. GW Effect van een G Amplitude Positie en oriënta Vermogen
- Het signaal van een GW
- Inspiral, merger en ringdown

#### Een GW detector

Michelson interferomete MI++

#### Detecties

GW 150914: BH+BH GW 170817: NS+NS

### Analyse van GWs

Spectra en SNR Meer detecties

### De toekomst

Globaal netwerk Einstein Telescope

LISA



Bron: lisamission.org

# Ruimtemissie

- 3 ruimtevaartuigen, 4 testmassa's
- Detector in een baan om de Zon, 20° achter de Aarde
- Driehoeksopstelling, armen van 2.5 miljoen km
- I Watt lasers
- Lage frequenties: 0.1 mHz 1 Hz  $(P \sim 1 \text{ s} 3 \text{ u})$
- Missieduur 5+ jaar
- LISA Pathfinder (december 2015) heeft technologie getest
- Lancering 2037+?

# Laser Interferometer Space Antenna (LISA)

### ART in drie slides

Einsteinvergelijkingen Golfoplossingen

# Golven

- Golfoplossingen FM vs. GW
- Effect van een
- Amplitude
- Positie en oriëntatie
- Vermogen Het signaal van een GW
- Inspiral, merger en ringdown

# Een GW detector

Michelson interferometer MI++

# Detecties

GW 150914: BH+BH GW 170817: NS+NS

# Analyse van GWs

Spectra en SNR Meer detecties

# De toekomst

Globaal netwerk Einstein Telescope

# Waarnemingen

- Galactische dubbele witte dwergen
- Supermassieve zwarte gaten (SMBHs) in de kernen van botsende sterrenstelsels
- Vangst van compacte objecten door SMBHs
- Kosmische strings?
- Fase-overgangen in het vroege heelal?

# Nauwkeurigheid

- Massa's van SMBHs ( $10^4 10^7 M_{\odot}$ ): tot  $\sim 0.1 10\%$
- Posities: enkele graden
- $\bullet\,$  Directe afstandmeting:  $\sim 1-10\%$



# hemel.waarnemen.com

#### Zwaartekrachtgolven

### ART in drie slides

Einsteinvergelijkingen Golfoplossingen

# Golven

- Golfoplossingen
- EM vs. GW
- Effect van een GW
- Amplitude
- Positie en oriëntatie
- Vermogen Het signaal van een GW
- Inspiral, merger en ringdown

# Een GW detector

Michelson interferomete MI++

# Detecties

GW 150914: BH+BH GW 170817: NS+NS

# Analyse van GWs

Spectra en SNR Meer detecties

# De toekomst

Globaal netwerk Einstein Telescope LISA



# https://hemel.waarnemen.com

- Actuele, eenvoudig en lastiger waar te nemen hemelverschijnselen
- Zichtbaarheid van Zon, Maan, planeten, meteoren, kometen, deepsky, ISS, ...
- Astrokalenders, hemelkaarten, maanfasen, hemel vannacht, waarneemweer, tabellen
- Bluesky, Mastodon, (Apps (Android/Apple)), (Facebook, Twitter)
- ullet ~ 10 000 pagina's; *Geen* reclame
- $\sim$ 1–2 miljoen bezoekers per jaar



# hemel.waarnemen.com astrokalender

Tijdstippen zijn in Midden-Europese zomertijd (MEZT)

# maandag 19 augustus



03.26: De Maan is in het punt van zijn baan dat het dichtst bij de Aarde ligt: het perigeum. De afstand tussen de

Aarde en de Maan bedraagt 362264 km. De schijnbare diameter van de Maan is groter dan gemiddel (3259,1%), door de kleinere afstand. De Maan is op dit moment wassend, voor 94% verlicht en hij is vrijwel de gehele nacht zichtbaar; 's avonds in het (zuid)oosten en tegen de ochtend in het westen of

Deze lezing op https://hemel.waarnemen.com/lezingen